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studied. The tapered incident wave is introduced into the classical Kirchhoff approximation (KA), and the
shadowing effect is also taken into account to make the KA results have a high accuracy. The definition
of the bistatic scattering coefficient of the modified KA and the method of moment (MOM) are unified.
The characteristics of the optical wave scattering from the lossy dielectric Gaussian random rough surface
of different parameters are analyzed by implementing MOM.
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The study on optical wave scattering from random rough
surface has been the subject of intensive investigation
over the past several decades for the application in a
number of important research areas such as characteri-
zation of films and optical interface, and the design of
optical scanning instrument for use in the semiconductor
industry[1−6]. The characteristic of optical wave scatter-
ing by one-dimensional (1D) conducting rough surface is
studied by the angular correlation functions of the po-
larized scattered intensities[7]. Among the many rough
surface theories for calculating scattering, the Kirch-
hoff approximation (KA)[8] and the method of moment
(MOM)[9] are widely used. KA is an analytical method
and MOM is a numerical method. In this letter, the
characteristic of optical wave scattering from the lossy di-
electric Gaussian random rough surface is studied by the
bistatic scattering coefficient. The tapered incidence,
which is commonly used in the MOM for calculating
rough surface scattering, is introduced into the classical
KA. The emphasis is put on studying the unification
of the definition of the bistatic scattering coefficient by
KA and MOM. The numerical results of the optical wave
scattering from the lossy dielectric rough surface are also
compared with these methods, and the influence of the
shadowing effect is taken into account in KA so as to
make the results have a high accuracy.

Considering an incident wave ϕinc(~r) impinging upon
a random rough surface with the height profile z = f(x),
as shown in Fig. 1. ε0 and ε1 are the relative dielectric
constants of the free space and the lower medium space,

Fig. 1. Geometry of optical wave scattering from the Gaus-
sian rough surface.

and ε0 = 1. f(x) is a Gaussian distributed rough surface
with the correlation length l and the root mean square
(RMS) height h. The spectral density of 1D Gaussian
random rough surface is[8]

W (k) =
h2l

2
√

π
exp(−−k2l2

4
). (1)

In this letter, the optical wave scattering by 1D lossy
dielectric Gaussian rough surface is studied by the total
electric field for the horizontal polarization and the total
magnetic field for the vertical polarization, respectively.
For the horizontal polarization, the total electric field of

the optical wave is ~E(~r) = ϕ(~r)ŷ, and for the vertical
polarization, the total magnetic field of the optical wave

is ~H(~r) = ϕ(~r)ŷ. The time dependence is e−iωt.
From the spectral density, the Gaussian rough surface

f(x) can be simulated by Monte Carlo method[9]. In the
two-dimensional (2D) scattering problem ~r = xx̂ + zẑ,
the total wave function ϕ(~r) is

ϕ(~r) = ϕinc(~r) + ϕs(~r), (2)

where ϕs(~r) is the scattered wave, which can be written
as[10]

ϕs(~r) = ϕ(~r) − ϕinc(~r)

=

∫

s

[

ϕ(~r ′)
∂G(~r, ~r ′)

∂n′
− G(~r, ~r ′)

∂ϕ(~r ′)

∂n′

]

ds′, (3)

G(~r, ~r ′) is the 2D Green’s function and G(~r, ~r ′) =
i
4H

(1)
0 (k0 |~r − ~r ′|), where k0 is the wave number of the

free space and H
(1)
0 (·) is the zeroth order Hankel function

of the first kind. The normal derivative of the Green’s
function is given by[11]

∂G(~r, ~r ′)

∂n′
=

ik0

4
n̂′ · ~r − ~r ′

|~r − ~r ′|H
(1)
1 (k0 |~r − ~r ′|), (4)
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n̂′ is the unit normal vector of the rough surface, n̂′ =
−f ′(x′)x̂+ẑ√
1+[f ′(x′)]2

, f ′(x′) is the first order derivative of f(x′),

and H
(1)
1 (·) is the first order Hankel function of the first

kind. Here, the Kirchhoff approximation is applied to
solve Eq. (3). If the Fresnel reflection coefficient for the
incident wave onto a plane surface is denoted by R, then
the total wave on the surface is given by[10]

ϕ(~r ′) = (1 + R)ϕinc(~r ′). (5)

And R satisfies

RHH(θi) =
ε1 cos θi − (ε1 − sin2 θi)

1/2

ε1 cos θi + (ε1 − sin2 θi)1/2
, (6a)

RVV(θi) =
cos θi − (ε1 − sin2 θi)

1/2

cos θi + (ε1 − sin2 θi)1/2
(6b)

for HH polarization and VV polarization, respectively,
with θi representing the incidnt angle. To avoid artificial
edge diffraction, the incident wave cannot be expressed as
a plane wave, but as a tapered wave in which the energy
is distributed in a narrow beam about the mean incident
angle. The tapered plane wave developed by Thorsos[8]

satisfies this requirement and is chosen as the incident
wave. Considering a tapered plane wave incident on the
rough surface, the incident wave can be expressed as[8]

ϕinc(~r ′) = exp{ik0[x
′ sin θi − f(x′) cos θi][1 + w(~r ′)]}

× exp

{

− [x′ + f(x′) tan θi]
2

g2

}

, (7)

where w(~r ′) = [2(x′ + f(x′) tan θi)
2/g2 − 1]/(k0g cos θi)

2,
g is the tapering parameter with the dimension and con-
trols the tapering of the incident wave. As the basis of the
tapered incident wave, the tapering parameter g and L
should at least satisfy all requirements of the wave equa-
tion, correlation length, and energy truncation, which
results in[12]

g >
6

(cos θi)1.5
, (8)

L > 15l and L ≥ 4g. (9)

Here, we choose g = L/4. From Eq. (4), the normal
derivative of the total wave function can be written as[10]

∂ϕ(~r ′)

∂n′
= (1 − R)

∂ϕinc(~r ′)

∂n′
, (10)

where ∂ϕinc(~r ′)
∂n′

= (∇′ϕinc(~r ′) · n̂′), which can be written
as

∂ϕinc(~r ′)

∂n′
= ϕinc(~r ′)

×
[

−f ′(x′)P1 +
2(x′ + f(x′) tan θi)

g2
P2

+P3 +
2 tan θi(x

′ + f(x′) tan θi)

g2
P2

]

, (11)

where P1 = ik0 sin θi(1 + w(~r ′)), P2 = ik0(x
′ sin θi −

f(x′) cos θi)
2

(k0g cos θi)2
− 1, P3 = −ik0(1 + w(~r ′)). With

far-field restriction, the following relationship then holds
for the argument of the Green’s function k0 |~r − ~r ′| ≈
k0r − kr̂ · ~r ′, where r̂ is the unit vector in the ~r direc-
tion. The normal derivative of the Green’s function is
similarly evaluated, making the additional assumption
that k0 |~r − ~r ′| ≫ 1, which is equivalent to kr ≫ 1. The
Green’s function and its normal derivative become as fol-
lows

G(~r, ~r ′) ≈
√

i

8πk0r
exp(ik0r) exp(−i~ks · ~r ′), (12a)

∂G(~r, ~r ′)

∂n′
≈

√

i

8πk0r
exp(ik0r) exp(−i~ks · ~r ′)(−i~ks · n̂′),

(12b)

where ~ks is scattering wave vector and equals k0(sin θsx̂+
cos θsẑ). So the scattered wave can be written as

ϕs
KA(~r) =

√

i

8πk0r
exp(ikr)ϕ

(N)
KA (θs), (13)

where

ϕ
(N)
KA (θs) =

∫

s

[(1 + R)ϕinc(~r ′)(−i~ks · n̂′)

−(1 − R)
∂ϕinc(~r ′)

∂n′
] exp(−i~ks · ~r ′)ds′, (14a)

ds′ =
√

1 + [f ′(x′)]2 dx′. (14b)

The bistatic scattering coefficient σ1(θs) in which the
shadowing effect is neglected is defined as[13]

Ps

Pinc
=

∫ π/2

−π/2

σ1(θs)dθs, (15)

where Pinc is the total power received by the rough sur-
face and Ps is the scattered power by the rough surface.
Finally, we have

σ1(θs) =

∣

∣

∣
ϕ

(N)
KA (θs)

∣

∣

∣

2

[

8πk0g
√

π
2 cos θi

(

1 − 1+2 tan2 θi

2k2

0
g2 cos2 θi

)] . (16)

The shadowing effect should be taken into account to
rectify the bistatic scattering coefficient,

σ(θs) = S(θi, θs)σ1(θs), (17)

where S(θi, θs) is the shadowing function, which can be
expressed as
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S(θi, θs) =







[1 + erf(vs)] (1 − e−2Bs)/(4Bs) 0◦ ≤ θs ≤ θi

[1 + erf(vi)] (1 − e−2Bi)/(4Bi) θ ≤ θs ≤ 90◦

[erf(vi) + erf(vs)] {1 − exp[−2(Bi + Bs)]}/[4(Bi + Bs)] 90◦ ≤ θs ≤ 180◦
, (18)

where Bs/i =
{

exp(−9v2
s/i/8)/(3πv2

s/i)
1/2 + exp(−v2

s/i)/(πv2
s/i)

1/2 − [1 − erf(vs/i)]
}

/4, vs/i =
∣

∣tan θs/i

∣

∣ (l/
√

2h), erf(·)
is the error function. It should be noted that the two conditions of KA are also considered in our numerical simulations.

Let ϕ(~r) and ϕ1(~r) denote the total wave function for the upper medium and the lower medium, respectively, and
they satisfy the following integral equations[9]:

1

2
ϕ(~r) −

∫

s

[

ϕ(~r ′)
∂G(~r, ~r ′)

∂n′
− G(~r, ~r ′)

∂ϕ(~r′)

∂n′

]

ds′ = ϕinc(~r), (19a)

1

2
ϕ1(~r) +

∫

s

[

ϕ1(~r
′)

∂G1(~r, ~r
′)

∂n′
− G1(~r, ~r

′)
∂ϕ1(~r

′)

∂n′

]

ds′ = 0, (19b)

where G1(~r, ~r
′) = 1

4H
(1)
0 (k1 |~r − ~r ′|) is the Green func-

tion of the lower medium, k1 is the wave number of the
lower medium. Using MOM to discretize the two integral
equations, the matrix equation of the problem is[9]

[

A B
ρA(1) B(1)

] [

u(x)
ν(x)

]

=

[

ϕinc

0

]

, (20)

where A, B, A(1), B(1) are four block matrices and

u(x)/

√

1 + [f ′ (x)]
2
, v(x) are unknowns, which corre-

spond to the surface electric field and magnetic field,
respectively. For HH polarization, ρ = 1 and for VV
polarization, ρ = ε1. The elements of the matrices are
not present here due to the space limitation. Solving
the matrix equation by the conjugate gradient method
(CGM)[9], the scattered wave function is obtained as

ϕs
MOM(~r) =

√

(i/8πk0r) exp(ik0r)ϕ
(N)
MOM(θs), (21)

where

ϕ
(N)
MOM(θs)

= −
∫

s

dx′{−u(x′) + ν(x′)ik0[f
′(x′) sin θs − cos θs]}

× exp(−i~ks · ~r ′). (22)

The definition of the bistatic scattering coefficient is
the same as that by Eq. (15). The bistatic scattering
coefficient calculated by MOM finally can be written as

σ(θs) =

∣

∣

∣
ϕ

(N)
MOM(θs)

∣

∣

∣

2

[

8πk0g
√

π
2 cos θi

(

1 − 1+2 tan2 θi

2k2

0
g2 cos2 θi

)] . (23)

Hence, the definitions of the bistatic scattering
coefficients of 1D rough surface scattering calculated
by KA and MOM are unified, just as those given in
Eqs. (16) and (23), respectively.

In the following numerical implementations, the wave-
length of the incident wave is 0.6328 µm and the incident
angle is 30◦ for HH polarization. In order to examine
the validity of the modified KA, the bistatic scatter-
ing coefficient calculated by MOM with Eq. (23) and
the modified KA with Eq. (16) are firstly compared

in Figs. 2(a) and (b) for HH and VV polarization, re-
spectively. From Fig. 2, it can be concluded that by
introducing the tapered wave into the classical KA and
the redefinition of the scattering coefficient calculated
by KA, the bistatic scattering coefficient calculated by
both MOM and the modified KA are almost identical
for the whole scattering regions.

Fig. 2. Comparison of scattering coefficients calculated by
MOM and KA for (a) HH polarization and (b) VV polariza-
tion.

Fig. 3. Scattering distribution of σ for different ε1.
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To further explore the dependences of the optical wave
scattering on the parameters of Gaussian random rough
surface, the scattering distribution of σ for different val-
ues of ε1, h, and l are calculated by MOM, and the
results are shown in Figs. 3 − 5. In Fig. 3, the influence
of ε1 on σ is plotted. It is observed that as the real part
of ε1 increasing, the scattering coefficient increases more
rapidly than that of the imaginary part, in other words,
the scattering coefficient is not sensitive to the variation
of the imaginary part. Figure 4 depicts the scattering
pattern of σ for different h. It is shown that with the
increase of h, the scattering coefficient near the specular
direction (mainly corresponding to the coherent compo-
nent) decreases, whereas the incoherent component in the
non-specular direction increases. Another point worth
noting is that for h = 0.1λ, the scattering coefficient
in the specular direction has a more obvious peak than
the result of h = 0.4λ, this phenomenon mainly results
from the fact that the roughness of the Gaussian surface
increases with larger h. Further illustration of the effect
of the correlation length l on the angular of σ is pre-
sented in Fig. 5. It is found that the influence of l on the
scattering coefficient σ is significant, especially for the
non-specular direction. The primary reason is that for

Fig. 4. Scattering distribution of σ for different h.

Fig. 5. Scattering distribution of σ for different l.

the smaller l, the height of Gaussian rough surface varies
more heavily, which leads to a more incoherent scattering
contribution to the bistatic scattering coefficient in the
non-specular direction. As apparently shown in Fig. 5,
the larger l is, the larger the scattering coefficient will
be for the same scattering angle away from the specular
direction.

In conclusion, by introducing the tapered incident
wave, taking into account the shadowing effect, and re-
defining the classical KA for calculating optical wave
scattering from 1D lossy dielectric Gaussian rough sur-
faces, the scattering coefficient calculated by KA agrees
very well with that by MOM. The characteristics of the
optical wave scattering from the lossy dielectric Gaussian
random rough surface for different parameters, such as
the lossy dielectric constant, the correlation length, and
the RMS height, are analyzed by implementing MOM.
The optical scattering pattern by the lossy dielectric
Gaussian random rough surface is found to be heavily
influenced by these parameters.
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